Refine Your Search

Topic

Author

Search Results

Technical Paper

Experimental Approach for the Knocking Noise Source Identification & Its Suppression through Lubrication Regime Optimization in Crank-Train of an IC Engine

2022-10-05
2022-28-0067
Over the years, Fuel efficiency and cabin comfort of vehicle has become increasingly important in buying decision and can significantly give competitive edge to the vehicle in marketplace. Weight and friction reduction of rotating and reciprocating components in engines is one of the proven approaches to improve the efficiency of internal combustion engine. To reduce the friction, the general approach is to use low viscosity engine oils, improve the surface finish and reduce the contact area of sliding elements, switch over from sliding contact to rolling contact etc. However sometimes this approach has adverse impact on engine NVH characteristics due to occurrence of abnormal transient noise due to mechanical knocking of the components in specific operating conditions.
Technical Paper

A Cost-Effective Approach to Attain Near-Vehicle Conditions in Coolant Circuit of Engine Test Bench

2022-10-05
2022-28-0084
With advancement of technologies, upgradation of validation procedures and equipment on engine dynamometer test bed is required to simulate environment similar to vehicle and achieve accurate test results. A coolant conditioning system helps in achieving desired temperatures of coolant in the circuit during engine validation. However, unlike radiator type cooling systems of vehicles, conventional coolant conditioning systems on engine test beds generate negative pressure in circuit which poses a risk of coolant boiling, loss of intended heat transfer and hence higher temperature in cylinder head which can be detrimental for durability of critical components like valves, valve seats etc. This paper encompasses a stepwise approach followed to attain near-vehicle coolant pressure conditions for a naturally aspirated engine. Coolant used for this experiment was 50:50 (by volume) ethylene glycol and water mixture.
Technical Paper

Study to Improve Engine Efficiency by Reducing Backpressure

2023-04-11
2023-01-0946
Exhaust system of an automobile is primarily employed in automobile to purify exhaust gases and reduce noise due to combustion. However, a side-effect of the above function is the increase in backpressure. As specified in various literatures, an increase in backpressure can lead to a deterioration on engine performance (Power & torque). Benefit of backpressure reduction can be further taken in terms improving the power & torque of engine or improving the fuel economy. With growing concerns related to global warming and CO2 emissions, reducing exhaust back pressure is one of the promising areas in engine design in order to improve the fuel economy of the automobile and achieving carbon neutrality targets. However, reducing the back pressure generally tends to deteriorate the noise attenuation performance of the Exhaust system.
Technical Paper

An Experimental Approach Towards Sustainable Solution for Material Recycling of ELV Plastic Bumpers and EV Batteries

2024-01-16
2024-26-0164
A general automotive car is majorly composed of high strength steel (6%), other steel (50%), Iron (15%), Plastics (7%), Aluminum (4%) and others (Rubber, Glass, Textile) about 18%. End-of-life vehicles (ELVs) are a significant source of waste and pollution in the automotive industry. Recycling ELVs, particularly their plastic components, Li-ion batteries, catalytic converters, and critical technology components such as alternators, semi-conductor chips, and high tensile strength steel can reduce their environmental impact and conserve valuable raw materials. The paper conducts a SWOT analysis and a life cycle assessment (LCA) to evaluate the long-term viability and potential of ELV recycling, environmental impact, and carbon footprint.
Technical Paper

An Experimental Approach to Investigate the FEAD Cover Failure & Its Design Optimization

2024-01-16
2024-26-0371
In automotive Front End Accessory Drives (FEAD), the crankshaft supplies power to accessories like alternators, pumps, etc. FEAD undergoes forced vibration due to crankshaft excitation, dynamic tension fluctuations can cause the belt to slip on the accessory pulleys. By considering the criticality of the system, when engine mounting is longitudinally to the vehicle which makes it directly exposed to the air flow containing foreign particles which may cause the damage to the FEAD system and deteriorate the intended functionality. FEAD cover is introduced in the system to enhance belt-pully system functionality by restricting the entry of foreign particles during engine operation. This paper contains a study of FEAD cover failure and provides the stepwise approach to capture such issue during novel model development for 4 cylinder naturally aspirated engine during engine bench testing.
Journal Article

Study of Effect of Ethanol Blending on Performance & Fuel Economy of Naturally Aspirated Gasoline Engine and Engine Hardware Optimization Potential

2022-10-05
2022-28-0024
Blending locally produced ethanol with petrol will help India strengthen its energy security. India is making steady progress in raising the share of ethanol having increased to 8.1% in ethanol supply year 2020-21 (Dec-Nov) with target to achieve 10% ethanol blending in the ethanol supply year 2021-22. In future, Government of India is planning to start supply of 20% ethanol blended petrol from Apr’23 and to cover PAN India by Apr’25. Pure ethanol has lower calorific value than Petrol thus ethanol blended petrol will always have calorific value lower than that of petrol thereby deteriorating Fuel economy. On the other hand, ethanol blended petrol will have higher RON compared to petrol. Higher RON reduces knocking tendency thereby providing calibration optimization potential to optimize Spark timing. Optimized spark timing can help in improving Full Load Torque by reducing Phasing losses and operating closer to MBT.
Technical Paper

Aerodynamic Design Optimization in Rear End of a Hatchback Passenger Vehicle

2019-03-25
2019-01-1430
Aerodynamic evaluation plays an important role in the new vehicle development process to meet the ever increasing demand of Fuel Economy (FE), superior aero acoustics and thermal performance. Computational Fluid Dynamics (CFD) is extensively used to evaluate the performance of the vehicle at early design stage to overcome cost of proto-parts, late design changes and for time line adherence. CFD is extensively used to optimize the vehicle’s shape, profiles and design features starting from the concept stage to improve the vehicle’s aerodynamic performance. Since the shape of the vehicle determines the flow behavior around it, the performance is different for hatchback, notchback and SUV type of vehicles. In a hatchback vehicle, the roof line is abruptly truncated at the end, which causes flow separation and increase in drag.
Technical Paper

Aerodynamic Development of Maruti Suzuki Vitara Brezza using CFD Simulations

2017-01-10
2017-26-0268
Recent automotive trend shows that customer demand is moving towards bigger size vehicle with more comfort, space, safety, feature and technology. Global market of SUV is projected to surpass 21 million units by 2020. Despite economic slowdown and weak new car sales worldwide, India and China will continue to be primary market for SUV due to sheer size of population, urban expanding middle class and larger untapped rural market. However, stricter emission norms push for clean and green technology and unfavorable policy towards use of diesel vehicle has made the SUV design very challenging due to conflicting needs. Due to bigger size of vehicle, aerodynamic design plays an important role in achieving emission targets and higher fuel efficiency. This paper highlights the aerodynamic development of Maruti Suzuki Vitara Brezza, which is an entry level SUV vehicle with high ground clearance of 198 mm and best in class fuel economy of 24.3 kmpl.
X